

Artificial Intelligence in Education: Opportunities, Risks, and Pedagogical Implications for Higher Education

Agung Yuliyanto Nugroho¹ , Marnangkok Pakpahan² , Yessy Ade Winarti³ , Nurul Hikmah⁴

¹Universitas Cendekia mitra, Indonesia

²Universitas Widya Dharma Pontianak, Indonesia

³Universitas Papua, Indonesia

⁴Universitas Widya Gama Mahakam Samarinda, Indonesia

ABSTRACT

Background: The rapid integration of Artificial Intelligence (AI) in various sectors, including education, is transforming the way teaching and learning processes are conducted. AI has the potential to revolutionize higher education by enhancing learning experiences, improving teaching efficiency, and providing personalized learning opportunities. However, the use of AI in education also brings with it potential risks, such as data privacy concerns, reliance on automated systems, and the impact on traditional pedagogical methods.

Purpose: This study explores the opportunities, risks, and pedagogical implications of integrating Artificial Intelligence in higher education. Specifically, it examines how AI tools can be utilized to enhance teaching, the challenges they present, and the ways in which educators and institutions can adapt to these technological changes to maximize their benefits.

Method: A qualitative approach was used to analyze relevant literature, case studies, and expert opinions on the use of AI in education. Interviews with higher education faculty and technology experts were conducted to gain insights into the practical applications and challenges of AI integration.

Results: The findings highlight that AI offers significant opportunities for personalized learning, data-driven decision-making, and administrative efficiency. However, it also poses risks related to data privacy, ethical concerns, and the potential for exacerbating educational inequalities. The pedagogical implications suggest a need for educators to develop new competencies and adapt teaching strategies to effectively integrate AI into the curriculum.

Conclusion: The integration of AI in higher education presents both significant opportunities and challenges. To fully harness the potential of AI while mitigating its risks, higher education institutions must prioritize ethical considerations, data privacy, and the development of pedagogical strategies that complement AI technologies.

KEYWORDS

Artificial Intelligence, Higher Education, Pedagogical Implications

Citation: Agung Yuliyanto, N., Marnangkok, P., Yessy Ade, W., & Nurul, H. (2025). Artificial Intelligence in Education: Opportunities, Risks, and Pedagogical Implications for Higher Education. *Journal Of Paddisengeng Technology*, 1(4), 181–191.

<https://doi.org/10.17323/Paddisengeng.2023.228>

Correspondence:

Nattawut Jinowat,
Agungboiler11@gmail.com

Received: October 12, 2025

Accepted: December 15, 2025

Published: December 31, 2025

INTRODUCTION

The rapid advancements in technology have introduced numerous transformations across various sectors, and education is no exception. One of the most significant technological innovations in recent years is Artificial Intelligence (AI), which has started to play a pivotal role in reshaping educational practices. The role of AI in education ranges from personalized learning

experiences to more efficient administrative processes, thereby offering substantial opportunities for educational Institutions (Bond, 2024; King, 2023; Polyportis, 2023). As such, the integration of AI in higher education holds the potential to drastically change traditional teaching and learning paradigms, making them more adaptive, scalable, and efficient. However, while the promises of AI in education are undeniable, the deployment of such technologies also raises important concerns and risks, including data privacy, ethical implications, and the potential for increased dependency on technology.

AI systems are designed to mimic human intelligence, enabling them to perform tasks such as problem-solving, decision-making, and learning from experience. In education, AI can be applied in various ways, such as in adaptive learning platforms, intelligent tutoring systems, and automated grading systems (Gordon, 2024; Li, 2023; Xia, 2024). These AI-powered tools can provide personalized learning experiences by adjusting content and assessments according to individual student needs, preferences, and learning styles. Moreover, AI can also assist in administrative tasks, such as student enrollment, course scheduling, and even identifying students at risk of falling behind academically. These capabilities promise to make educational processes more efficient, thus allowing educators to focus more on teaching and less on administrative burdens.

However, the use of AI in education is not without its challenges. One of the most pressing concerns is the issue of data privacy (Ahmad, 2022; Mustafa, 2024; Zhan, 2024). AI systems often require large amounts of data to function effectively, which can include sensitive information such as student performance, personal preferences, and behavioral data. This raises concerns about the security of such data, as well as the potential for misuse or unauthorized access. With growing concerns about cyber threats and data breaches, educational institutions must ensure that AI systems are secure and that data privacy is prioritized. Furthermore, the collection and use of student data must be done transparently, with proper consent and in compliance with data protection regulations.

In addition to data privacy issues, there are ethical considerations surrounding the use of AI in education. AI systems are only as good as the data they are trained on, and if the data is biased, the AI system's outcomes can also be biased (Crompton, 2024; Guerrero, 2023; Islam, 2022). This is particularly concerning in educational contexts, where biased algorithms could perpetuate inequalities by unfairly assessing student performance or favoring certain groups over others. For instance, an AI-powered grading system that is not properly calibrated could disproportionately penalize students from disadvantaged backgrounds. Therefore, educators and policymakers must ensure that AI systems are designed and implemented with fairness, transparency, and accountability in mind.

Another significant concern is the potential impact of AI on the role of educators. With the automation of certain teaching and administrative tasks, there is a fear that AI could replace educators or reduce the demand for human teachers (Galindo-Domínguez, 2024; Kim, 2023; Nemorin, 2023). While AI can undoubtedly augment teaching practices and provide valuable support, it is unlikely to fully replace human interaction in the classroom. Education is a deeply human endeavor, and teachers play a critical role in fostering social and emotional learning, motivating students, and providing mentorship. The challenge, therefore, is to strike a balance between utilizing AI to improve educational outcomes while preserving the essential human elements of teaching.

Moreover, AI's integration into higher education must be approached with caution to avoid exacerbating existing inequalities (Babu, 2024; Mir, 2023; Zarei, 2024). Access to AI-powered educational tools and platforms may be limited in certain regions or among disadvantaged groups,

further widening the digital divide. Inequities in access to technology could result in some students being left behind, while others benefit from the advanced capabilities of AI. To ensure equitable access, educational institutions must invest in the necessary infrastructure and resources to provide all students with the opportunity to benefit from AI-enhanced learning experiences.

Despite these challenges, the potential benefits of AI in education are considerable. Personalized learning, for example, is one of the most significant opportunities that AI offers (Nagi, 2023; Su, 2022a; Yim, 2025). By analyzing data on individual students, AI systems can tailor lessons, assignments, and assessments to better suit their learning styles and pace. This level of customization is difficult to achieve in traditional classrooms, where teaching methods often need to be standardized to accommodate large groups of students. Personalized learning has the potential to improve student engagement, satisfaction, and overall academic performance, making education more accessible and effective for diverse learners.

AI also holds the promise of improving the efficiency and effectiveness of administrative functions in higher education. With the growing complexity of academic institutions, the need for automation in tasks such as student records management, scheduling, and even grading has become more pronounced (Munir, 2022; Ng, 2024; Salas-Pilco, 2022a). AI can help streamline these processes, reducing the burden on administrative staff and allowing them to focus on more value-added tasks. For instance, AI-powered systems can predict student performance, identify those who may need additional support, and recommend interventions before issues become critical. This predictive capability can contribute to better retention rates and improved academic outcomes.

Furthermore, AI can enhance teaching and learning through intelligent tutoring systems (ITS), which provide one-on-one support to students outside of traditional classroom settings. These systems can provide instant feedback on assignments, help students with problem-solving, and offer additional resources tailored to individual learning needs. ITS can be especially beneficial in subjects that require personalized attention, such as mathematics and languages, where students may struggle with specific concepts and need extra help to grasp them.

Despite the significant potential of AI in education, its implementation requires careful planning and consideration of the specific needs and context of higher education institutions. Faculty members, administrators, and policymakers must work together to ensure that AI tools align with institutional goals, teaching philosophies, and student needs. Professional development and training are essential for educators to effectively integrate AI into their teaching practices. Additionally, institutions must provide the necessary infrastructure to support AI tools, including reliable internet access, data storage, and cybersecurity measures.

The success of AI in education also depends on the ethical frameworks and policies that govern its use. Clear guidelines must be established regarding the use of student data, transparency in AI algorithms, and accountability for AI-driven decisions. Collaboration between AI developers, educators, policymakers, and other stakeholders is crucial to ensuring that AI technologies are used responsibly and in ways that benefit all students.

In conclusion, while AI presents numerous opportunities for enhancing higher education, its integration must be approached with caution. By addressing the risks and ethical concerns associated with AI, educational institutions can harness its potential to improve teaching, learning, and administrative processes. Ultimately, AI should be seen as a tool to support, not replace, educators, and its use should always be aligned with the overarching goal of providing equitable, high-quality education to all students. As such, careful thought, planning, and collaboration are


essential to ensure that AI's integration into higher education leads to positive outcomes for both students and educators.

RESULT AND DISCUSSION

The findings of this study indicate that AI integration in higher education offers substantial opportunities for enhancing personalized learning, increasing administrative efficiency, and improving student engagement. AI-powered systems, such as adaptive learning platforms and intelligent tutoring systems, have demonstrated their ability to tailor educational experiences to individual students' needs, helping them progress at their own pace (Salas-Pilco, 2022b, 2022c; Zafari, 2022). Personalized learning not only increases student satisfaction but also contributes to improved academic outcomes. In terms of administrative processes, AI has proven to streamline operations such as course scheduling, student enrollment, and predictive analytics to identify students at risk of underperforming. These advancements allow educators and administrators to allocate resources more effectively and provide timely interventions, ultimately enhancing student retention and success rates.

However, the research also highlights several risks and challenges associated with AI in education. Data privacy emerged as a major concern, with the need for strict protocols to protect sensitive student information from unauthorized access and misuse. Furthermore, ethical issues related to algorithmic bias were identified, as AI systems can perpetuate existing inequalities if not designed and monitored carefully. There was also a concern regarding the potential displacement of human educators, as AI may automate certain tasks traditionally performed by teachers, though most participants agreed that AI should complement rather than replace human interaction in the classroom. These findings suggest that while AI presents significant benefits, careful planning, ethical oversight, and continuous evaluation are essential to mitigate potential risks and ensure its positive impact on higher education.

Figure 1. Analisis Smart Pls

The diagram presented in Figure 1 represents a SmartPLS analysis, which is commonly used in structural equation modeling (SEM) to assess the relationships between latent variables. The arrows between the variables (Strongly Agree, Agree, Disagree, Strongly Disagree, A, B, and C) indicate causal relationships, with the numbers adjacent to the arrows representing path coefficients, which measure the strength and direction of these relationships. For instance, the path coefficient of 0.837 between "Strongly Agree" and "Agree" suggests a strong positive relationship. Additionally, the path coefficient values and their respective signs (positive or negative) provide insights into how

each latent variable influences others in the model. This type of analysis is often used in research to understand complex relationships and make predictions based on observed data.

Table 1. Descriptive

	Mean	Median	Observed min	Observed max	Standard deviation	Skewness	Number of observations used	Cramér-von Mises test statistic	Cramér-von Mises p value
A	-0.000	-0.070	-1.182	2.155	1.000	0.435	16.000	0.150	0.021
Agree	0.000	-0.185	-2.158	1.788	1.000	-0.023	16.000	0.184	0.007
B	0.000	-0.220	-0.540	3.835	1.000	3.869	16.000	0.807	0.000
C	-0.000	-0.180	-0.592	3.800	1.000	3.745	16.000	0.653	0.000
Disagree	0.000	0.126	-1.890	2.142	1.000	0.279	16.000	0.128	0.041
Strongly Agree	0.000	-0.375	-1.043	2.961	1.000	1.839	16.000	0.246	0.001
Strongly Disagree	0.000	-0.241	-0.408	3.861	1.000	3.957	16.000	0.950	0.000

Table 1 presents the descriptive statistics for the variables A, Agree, B, C, Disagree, Strongly Agree, and Strongly Disagree, based on 16 observations. The statistics indicate that the mean values for most variables are close to zero, suggesting that the data is centered around this point, while the standard deviation of 1.000 shows consistent variability across the variables. The skewness values are mostly positive, indicating slight rightward skewness in the distributions. Additionally, the Cramér-von Mises p-values range from 0.001 to 0.041, highlighting some variability in how well the data fits expected distributions, with most p-values being below the 0.05 threshold, suggesting significant deviations from a normal distribution for several variables.

The integration of Artificial Intelligence (AI) in higher education is a subject of increasing importance, as it has the potential to revolutionize how learning is delivered, managed, and assessed. This transformation can significantly enhance educational outcomes by personalizing learning experiences, increasing access to resources, and optimizing administrative processes (Demartini, 2024; Uribe, 2024; Yang, 2022). AI technologies such as intelligent tutoring systems, adaptive learning platforms, and predictive analytics are already being employed to cater to the individual needs of students, providing them with customized educational experiences. These

developments represent a considerable opportunity for educational institutions to improve both teaching efficiency and student engagement.

One of the key benefits of AI in higher education is its ability to offer personalized learning experiences. Adaptive learning systems can adjust the difficulty level of content based on a student's performance, offering tailored support where needed (Hooda, 2022; Meron, 2023; Su, 2022b). This individualized approach addresses the diverse learning styles and needs of students, which is especially valuable in large, diverse classrooms. By using AI to personalize learning, educators can ensure that students are not left behind and that they are consistently challenged at an appropriate level. This has the potential to increase student motivation and academic success, as learners are able to progress at their own pace.

Moreover, AI can enhance the role of educators by providing them with tools to better understand and support their students (Guo, 2024; Prahani, 2022; Wang, 2024). Through AI-powered analytics, instructors can gain insights into student performance, identify those who are struggling, and intervene in a timely manner. This data-driven approach allows for more effective teaching strategies and ensures that students receive the support they need to succeed. By automating tasks such as grading and administrative duties, AI also frees up valuable time for educators to focus on teaching and mentoring, thereby improving the overall quality of education.

However, while the benefits of AI in education are clear, there are also significant challenges and risks that must be addressed. One of the most pressing concerns is data privacy and security. AI systems rely on vast amounts of data to function effectively (Ifenthaler, 2024; Tapalova, 2022; Wardat, 2024), which can include sensitive information about students' academic records, personal preferences, and behaviors. The collection, storage, and use of such data raise serious concerns about privacy and the potential for misuse. Educational institutions must ensure that appropriate measures are in place to protect this data and comply with regulations such as the General Data Protection Regulation (GDPR).

In addition to data privacy, there are ethical considerations regarding the use of AI in education. AI systems are only as reliable and unbiased as the data they are trained on, and if the data is flawed or biased, the AI system may produce biased results. This is particularly concerning in educational contexts, where biased AI algorithms could perpetuate inequality by unfairly assessing student performance or favoring certain groups over others. For instance, an AI-based grading system might disadvantage students from disadvantaged backgrounds or those with learning disabilities. To mitigate such risks, it is crucial to ensure that AI systems are designed and tested for fairness, transparency, and accountability.

Another challenge associated with AI integration in education is the potential for over-reliance on technology. While AI has the potential to significantly enhance the learning experience, it is unlikely to replace the critical role of human educators. Teachers bring unique qualities to the classroom, including emotional intelligence, creativity, and the ability to foster social interactions, that AI cannot replicate. It is essential that AI is used as a complementary tool, rather than as a replacement for educators. The goal should be to strike a balance between utilizing AI to enhance educational outcomes while preserving the essential human elements of teaching and learning.

Furthermore, the implementation of AI in higher education may exacerbate existing inequalities in access to technology. While AI-powered tools have the potential to democratize education by making high-quality learning resources accessible to a wider audience, there is a risk that students in underfunded or remote areas may not have the necessary infrastructure, such as reliable internet access or computing devices, to benefit from these advancements. This digital divide could deepen educational disparities between different socioeconomic groups. To ensure that AI serves as an equalizer rather than a divider, institutions must make efforts to provide equitable access to technology and ensure that AI tools are accessible to all students, regardless of their background.

In conclusion, the integration of AI into higher education holds significant promise but also presents several challenges. By personalizing learning, improving teaching efficiency, and supporting administrative functions, AI can enhance educational outcomes and increase access to learning opportunities. However, the risks related to data privacy, ethical concerns, and potential over-reliance on technology must be carefully managed. Institutions must adopt a responsible approach to AI implementation, ensuring that it complements human educators, safeguards student data, and is used equitably across all student populations. With the right policies, training, and infrastructure, AI can play a transformative role in shaping the future of higher education.

CONCLUSION

Artificial Intelligence (AI) offers immense potential for transforming higher education by enhancing personalized learning, improving teaching efficiency, and optimizing administrative processes. Through AI-powered tools like adaptive learning platforms and intelligent tutoring systems, educational experiences can be tailored to individual students, meeting their unique needs and learning styles. This personalized approach has the potential to boost student engagement and academic success, making education more inclusive and effective. Furthermore, AI can support educators by automating administrative tasks, allowing them to focus more on teaching and mentoring students, thereby enhancing the overall quality of education.

However, despite its significant advantages, AI in education also brings with it a set of challenges that need careful attention. One of the primary concerns is data privacy and security. AI systems rely on large volumes of sensitive student data to function effectively, which raises concerns about the protection of personal information and compliance with data protection laws. Educational institutions must ensure robust measures are in place to secure student data and prevent unauthorized access or misuse, maintaining trust among students and their families.

Ethical issues also pose a significant challenge. AI systems are only as good as the data they are trained on, and biased data can lead to biased outcomes. In an educational context, this could mean unfair assessments of student performance or discriminatory practices based on race, gender, or socio-economic status. Institutions must therefore be vigilant in developing and deploying AI systems that are transparent, fair, and accountable, ensuring they do not perpetuate existing inequalities but rather promote fairness and equal opportunity for all students.

Another concern is the potential over-reliance on AI, which may undermine the essential human elements of teaching. While AI can automate tasks and support educators, it cannot replace the critical role that teachers play in fostering social-emotional learning, providing mentorship, and encouraging creative thinking. The relationship between students and teachers is fundamental to the learning experience, and AI should be viewed as a tool to enhance, not replace, this relationship.

Ensuring a balanced approach to AI integration will be crucial for maintaining the human touch in education.

In conclusion, the integration of AI in higher education holds great promise for enhancing educational outcomes, but it must be approached with caution. While AI can greatly improve the personalization of learning and administrative efficiency, it also presents risks related to data privacy, ethical considerations, and over-reliance on technology. By addressing these challenges and ensuring responsible implementation, AI can contribute to a more equitable and effective educational environment, benefiting both students and educators alike. It is essential that higher education institutions adopt AI in a way that complements human teaching practices, safeguards student data, and ensures that all students have equal access to its benefits.

AUTHORS' CONTRIBUTION

Author 1: Conceptualization; Project administration; Validation; Writing - review and editing.
Author 2: Conceptualization; Data curation; In-vestigation.
Author 3: Data curation; Investigation.
Author 4: Formal analysis; Methodology; Writing - original draft.

REFERENCES

Ahmad, S. F. (2022). Academic and Administrative Role of Artificial Intelligence in Education. *Sustainability Switzerland*, 14(3). <https://doi.org/10.3390/su14031101>

Babu, S. S. (2024). Application of artificial intelligence in adaptation of gamification in education: A literature review. *Computer Applications in Engineering Education*, 32(1). <https://doi.org/10.1002/cae.22683>

Bond, M. (2024). A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. *International Journal of Educational Technology in Higher Education*, 21(1). <https://doi.org/10.1186/s41239-023-00436-z>

Crompton, H. (2024). Affordances and challenges of artificial intelligence in K-12 education: A systematic review. *Journal of Research on Technology in Education*, 56(3), 248–268. <https://doi.org/10.1080/15391523.2022.2121344>

Demartini, C. G. (2024). Artificial Intelligence Bringing Improvements to Adaptive Learning in Education: A Case Study. *Sustainability Switzerland*, 16(3). <https://doi.org/10.3390/su16031347>

Galindo-Domínguez, H. (2024). An analysis of the use of artificial intelligence in education in Spain: The in-service teacher's perspective. *Journal of Digital Learning in Teacher Education*, 40(1), 41–56. <https://doi.org/10.1080/21532974.2023.2284726>

Gordon, M. (2024). A scoping review of artificial intelligence in medical education: BEME Guide No. 84. *Medical Teacher*, 46(4), 446–470. <https://doi.org/10.1080/0142159X.2024.2314198>

Guerrero, D. T. (2023). Advancing Surgical Education: The Use of Artificial Intelligence in Surgical Training. *American Surgeon*, 89(1), 49–54. <https://doi.org/10.1177/00031348221101503>

Guo, S. (2024). Artificial intelligence in education research during 2013–2023: A review based on bibliometric analysis. *Education and Information Technologies*, 29(13), 16387–16409. <https://doi.org/10.1007/s10639-024-12491-8>

Hooda, M. (2022). Artificial Intelligence for Assessment and Feedback to Enhance Student Success in Higher Education. *Mathematical Problems in Engineering*, 2022(Query date: 2026-01-13 08:46:31). <https://doi.org/10.1155/2022/5215722>

Ifenthaler, D. (2024). Artificial Intelligence in Education: Implications for Policymakers, Researchers, and Practitioners. *Technology Knowledge and Learning*, 29(4), 1693–1710. <https://doi.org/10.1007/s10758-024-09747-0>

Islam, N. M. (2022). Adopting artificial intelligence in dental education: A model for academic leadership and innovation. *Journal of Dental Education*, 86(11), 1545–1551. <https://doi.org/10.1002/jdd.13010>

Kim, T. W. (2023). Application of artificial intelligence chatbots, including ChatGPT, in education, scholarly work, programming, and content generation and its prospects: A narrative review. *Journal of Educational Evaluation for Health Professions*, 20(Query date: 2026-01-13 08:46:31). <https://doi.org/10.3352/jeehp.2023.20.38>

King, M. R. (2023). A Conversation on Artificial Intelligence, Chatbots, and Plagiarism in Higher Education. *Cellular and Molecular Bioengineering*, 16(1), 1–2. <https://doi.org/10.1007/s12195-022-00754-8>

Li, S. (2023). A Risk Framework for Human-centered Artificial Intelligence in Education: Based on Literature Review and Delphi–AHP Method. *Educational Technology and Society*, 26(1), 187–202. [https://doi.org/10.30191/ETS.202301_26\(1\).0014](https://doi.org/10.30191/ETS.202301_26(1).0014)

Meron, Y. (2023). Artificial intelligence in design education: Evaluating ChatGPT as a virtual colleague for post-graduate course development. *Design Science*, 9(Query date: 2026-01-13 08:46:31). <https://doi.org/10.1017/dsj.2023.28>

Mir, M. M. (2023). Application of Artificial Intelligence in Medical Education: Current Scenario and Future Perspectives. *Journal of Advances in Medical Education and Professionalism*, 11(3), 133–140. <https://doi.org/10.30476/jamp.2023.98655.1803>

Munir, H. (2022). Artificial Intelligence and Machine Learning Approaches in Digital Education: A Systematic Revision. *Information Switzerland*, 13(4). <https://doi.org/10.3390/info13040203>

Mustafa, M. Y. (2024). A systematic review of literature reviews on artificial intelligence in education (AIED): A roadmap to a future research agenda. *Smart Learning Environments*, 11(1). <https://doi.org/10.1186/s40561-024-00350-5>

Nagi, F. (2023). Applications of Artificial Intelligence (AI) in Medical Education: A Scoping Review. *Studies in Health Technology and Informatics*, 305(Query date: 2026-01-13 08:46:31), 648–651. <https://doi.org/10.3233/SHTI230581>

Nemorin, S. (2023). AI hyped? A horizon scan of discourse on artificial intelligence in education (AIED) and development. *Learning Media and Technology*, 48(1), 38–51. <https://doi.org/10.1080/17439884.2022.2095568>

Ng, D. T. K. (2024). Artificial intelligence (AI) literacy education in secondary schools: A review. *Interactive Learning Environments*, 32(10), 6204–6224. <https://doi.org/10.1080/10494820.2023.2255228>

Polyportis, A. (2023). A longitudinal study on artificial intelligence adoption: Understanding the drivers of ChatGPT usage behavior change in higher education. *Frontiers in Artificial Intelligence*, 6(Query date: 2026-01-13 08:46:31). <https://doi.org/10.3389/frai.2023.1324398>

Prahani, B. K. (2022). Artificial Intelligence in Education Research During the Last Ten Years: A Review and Bibliometric Study. *International Journal of Emerging Technologies in Learning*, 17(8), 169–188. <https://doi.org/10.3991/ijet.v17i08.29833>

Salas-Pilco, S. Z. (2022a). Artificial Intelligence and Learning Analytics in Teacher Education: A Systematic Review. *Education Sciences*, 12(8). <https://doi.org/10.3390/educsci12080569>

Salas-Pilco, S. Z. (2022b). Artificial Intelligence and New Technologies in Inclusive Education for Minority Students: A Systematic Review. *Sustainability Switzerland*, 14(20). <https://doi.org/10.3390/su142013572>

Salas-Pilco, S. Z. (2022c). Artificial intelligence applications in Latin American higher education: A systematic review. *International Journal of Educational Technology in Higher Education*, 19(1). <https://doi.org/10.1186/s41239-022-00326-w>

Su, J. (2022a). Artificial Intelligence (AI) in early childhood education: Curriculum design and future directions. *Computers and Education Artificial Intelligence*, 3(Query date: 2026-01-13 08:46:31). <https://doi.org/10.1016/j.caeari.2022.100072>

Su, J. (2022b). Artificial intelligence in early childhood education: A scoping review. *Computers and Education Artificial Intelligence*, 3(Query date: 2026-01-13 08:46:31). <https://doi.org/10.1016/j.caeari.2022.100049>

Tapalova, O. (2022). Artificial Intelligence in Education: AIEd for Personalised Learning Pathways. *Electronic Journal of E Learning*, 20(5), 639–653. <https://doi.org/10.34190/ejel.20.5.2597>

Uribe, S. E. (2024). Artificial intelligence chatbots and large language models in dental education: Worldwide survey of educators. *European Journal of Dental Education*, 28(4), 865–876. <https://doi.org/10.1111/eje.13009>

Wang, S. (2024). Artificial intelligence in education: A systematic literature review. *Expert Systems with Applications*, 252(Query date: 2026-01-13 08:46:31). <https://doi.org/10.1016/j.eswa.2024.124167>

Wardat, Y. (2024). Artificial Intelligence in Education: Mathematics Teachers' Perspectives, Practices and Challenges. *Iraqi Journal for Computer Science and Mathematics*, 5(1), 60–77. <https://doi.org/10.52866/ijcsm.2024.05.01.004>

Xia, Q. (2024). A scoping review on how generative artificial intelligence transforms assessment in higher education. *International Journal of Educational Technology in Higher Education*, 21(1). <https://doi.org/10.1186/s41239-024-00468-z>

Yang, W. (2022). Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation. *Computers and Education Artificial Intelligence*, 3(Query date: 2026-01-13 08:46:31). <https://doi.org/10.1016/j.caeari.2022.100061>

Yim, I. H. Y. (2025). Artificial intelligence (AI) learning tools in K-12 education: A scoping review. *Journal of Computers in Education*, 12(1), 93–131. <https://doi.org/10.1007/s40692-023-00304-9>

Zafari, M. (2022). Artificial Intelligence Applications in K-12 Education: A Systematic Literature Review. *IEEE Access*, 10(Query date: 2026-01-13 08:46:31), 61905–61921. <https://doi.org/10.1109/ACCESS.2022.3179356>

Zarei, M. (2024). Application of artificial intelligence in medical education: A review of benefits, challenges, and solutions. *Medicina Clinica Practica*, 7(2). <https://doi.org/10.1016/j.mcpsp.2023.100422>

Zhan, Z. (2024). A systematic literature review of game-based learning in Artificial Intelligence education. *Interactive Learning Environments*, 32(3), 1137–1158. <https://doi.org/10.1080/10494820.2022.2115077>

Copyright Holder :
© Agung Yuliyanto Nugroho et al. (2025).

First Publication Right :
© Journal of Paddisengeng Technology

This article is under:

